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Abstract

Studying dynamic stability of a vertically suspended, fully submerged pipe conveying fluid upwards, researchers have

found a contradiction between theoretical predictions and experiments. Experiments did not show any instability, while

theory predicts instability at infinitesimally low fluid velocities for a pipe without dissipation mechanisms. To explain

this contradiction, in 2005 Paı̈doussis and co-workers postulated a new description of the boundary condition at the

free end of the pipe. Subject to this boundary condition the pipe is predicted to become unstable by divergence (stable

node to saddle bifurcation) at a velocity higher than yet achieved in experiments. In this paper, it is shown that a

realistic description of hydrodynamic drag in combination with conventional boundary conditions might result in even

higher critical velocity, and hence, this could also be an explanation of the contradiction. The description of the

hydrodynamic drag is based on experimental data available in literature. This data has been obtained by experimenting

with submerged rigid cylinders. To make it applicable to flexible pipes, a key step is undertaken in this paper to translate

the data from the frequency domain to the time domain. Using the time-domain description of the hydrodynamic drag

in combination with the conventional boundary conditions at the free end, it is shown that the pipe becomes unstable by

flutter (stable focus to unstable focus bifurcation) at a critical velocity, which is much higher than that attainable in

small-scale experiments. For fluid velocities exceeding the critical one, the pipe motion reaches a steady oscillation of

finite amplitude, i.e. a stable limit cycle.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Submerged, cantilever pipes conveying fluid recently had a revival of practical interest. A new concept was developed

of liquefying natural gas on a barge offshore. This process requires large volumes of cooling water. Designs were made

for pipes suspended from the floating barge for the conveyance of cooling water. These pipes, referred to as free-

hanging risers, have an unconstrained tip (lower end) and convey fluid upwards. Instability (vibration in the bending

mode) of these risers should be avoided.

In recent years, different theories have been developed to predict stability of submerged, cantilever pipes conveying

fluid upwards. It was first thought that once all dissipation mechanisms are neglected, the cantilever pipe loses stability
e front matter r 2006 Elsevier Ltd. All rights reserved.
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at infinitesimal fluid velocities (Paı̈doussis and Luu, 1985). In this paper, the conventional boundary conditions were

used, i.e. the bending moment and the shear force are assumed to be zero at the free end. Physically, this means that

neither the direction nor the absolute value of the momentum of the fluid changes direction as the fluid enters the pipe,

implying that the average velocity of the fluid is tangential to the deflected pipe.

Using these boundary conditions and employing the method proposed by Lee and Mote (1997), one can prove that

irrespective of the wave frequency, at the upstream free end and at the downstream fixed end of a tensioned cantilever

pipe aspirating water, there is a positive energy flux into the pipe during wave reflection from both ends. The positive

energy flux at both boundaries implies that, in the absence of hydrodynamic drag, instability occurs at infinitely small

fluid velocities. However, this is in contrast with experiments, which did not show such instability.

An attempt to explain this contradiction was made by Paı̈doussis (1999), suggesting that the theoretical prediction is

wrong because of an improper description of the negative pressurization of water at the inlet of the pipe. However,

Kuiper and Metrikine (2005) showed that this pressurization influences the stability only slightly. In addition, they

showed, using a linearized drag description, that the external hydrodynamic drag is the major stabilizing factor, which

prohibits the pipe instability at low flow speeds.

In reaction to this paper, Paı̈doussis et al. (2005) postulated several new descriptions of the boundary condition for

the balance of the shear forces at the free end of the pipe. Their basic description of the boundary condition assumes

that the inflow remains substantially tangential to the undeflected pipe. Using this boundary description the pipe is

predicted to become unstable by divergence at a high fluid velocity, which has not yet been reached in experiments.

Alternative variants of this boundary condition were also discussed and analysed by varying the assumptions

concerning depressurization, tension and inflow direction. The main difference between all variants of the boundary

condition presented by Paı̈doussis et al. (2005) and the conventional boundary condition is that the former assume that

the fluid momentum changes direction as the fluid enters the pipe, whereas the latter considers this momentum to

remain unchanged.

The correct description of the flow field in the vicinity of the tip is obviously of great importance for the stability of

the pipe conveying fluid. To keep the comparison clean, in this paper we only analyse the two extreme boundary

conditions for the balance of the shear forces at the free end. One is the conventional boundary condition which

assumes an averaged inflow direction tangential to the deflected pipe. The other is the basic model of the boundary

condition postulated by Paı̈doussis et al. (2005), which assumes an averaged inflow direction tangential to the

undeflected pipe.

In agreement with Paı̈doussis et al. (2005), we think that the averaged inflow direction is tangential neither to the

deflected pipe end nor to the undeflected pipe end, but that the angle between the pipe and the inflow varies in time

between these two bounds. However, we think that reality is closer to the conventional boundary condition than to the

recently proposed one. Using the travelling wave method for the situation in between these two extremes (Lee and

Mote, 1997) it can be proven theoretically that the energy gain at the downstream fixed end is greater than the energy

loss at the upstream end. Hence, in the absence of damping, the tensioned cantilever pipe model loses stability at

infinitesimal fluid velocities. By adding a linear, external damping Kuiper and Metrikine (2005) showed that using the

conventional boundary conditions the critical velocity corresponding to the instability onset is strongly influenced by

this damping. Since the damping force employed by Kuiper and Metrikine (2005) was not based on experiments, no

quantitative comparison of the critical velocity could be made with measurements. Note that in the above paper an

extensive parametric study of the linearized drag on the critical velocity has been presented.

The aim of this paper is twofold, namely to predict quantitatively the onset of instability and the amplitude of the

steady-state vibrations using physically realistic drag values. The onset of instability corresponds to infinitesimal

deflections of the pipe and, therefore, to the laminar regime of the flow around the pipe. In this regime, the drag is

proportional to the pipe velocity. The proportionality coefficient is realistically quantified in this paper using

experimental data available in literature. The steady-state vibrations of the pipe correspond to larger deflections and

velocities of the pipe, which cause the flow to separate from the pipe. In this turbulent regime the drag has a quadratic

dependence on the transverse velocity of the pipe. This dependence is also quantified in this paper using experimental

data.

This paper is structured as follows. In Section 2, a linearized equation of motion is presented of a submerged, free-

hanging riser conveying fluid, and the main assumptions are discussed. Using Argand diagrams, the stability of the

linearized system, using different boundary conditions at the free end, is analysed in Section 3. Section 4 is devoted to a

time-domain description of hydrodynamic drag. The approach is to transform experimentally obtained frequency- and

amplitude-dependencies of hydrodynamic drag to the time domain. The newly obtained drag description is used in

Section 5 to study both the instability and the amplitude of the steady-state pipe vibrations. In this section, the

conventional boundary conditions at the inlet are used. Employing the Galerkin’s mode decomposition method it is

shown that the theoretically computed critical fluid velocity is much higher than the fluid speeds attainable in the
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experiments with free hanging pipes aspirating water, and hence, it is not surprising that experiments did not show any

instability.

2. Assumptions and equation of motion

The system under consideration is an initially straight, submerged, fluid-conveying pipe of finite length as sketched in

Fig. 1. It is assumed that the pipe moves only in the plane that is depicted in this figure and performs small vibrations

about the equilibrium configuration. The pipe is considered to be slender, its lateral deflection w(z,t) to be small

compared to the length of the pipe, and the vibrations be of a low frequency, so that the Euler–Bernoulli theory is

applicable for description of the pipe dynamic bending. Due to gravity and internal fluid resistance the axial tension in

the pipe Tr(z) is a linear function of depth,

TrðzÞ ¼ rrArgðL� zÞ � rf ArgL� rf Ai
f

Di

u2f

2
ðL� zÞ, (1)

with rr and rf the mass densities of the pipe material and the fluid, respectively, Ar the cross-sectional area of the pipe

wall, Ai the internal cross-sectional area of the pipe, g the gravity acceleration, L the length of the pipe, Di the inner

diameter of the pipe, uf the fluid velocity, and f the resistance coefficient of Darcy–Weisbach. The fluid outside the pipe

is considered as still water. The internal fluid flow is approximated as a plug flow, i.e. as if it were an infinitely flexible

rod travelling through the pipe, all points of the fluid having a velocity uf relative to the pipe (directed upward).

With these assumptions, the equation that governs the horizontal motion of a differential element of the pipe can be

written as

EI
q4w

qz4
�

q
qz

TrðzÞ
qw

qz

� �
þ rf Ai u2f

q2w

qz2
� 2uf

q2w

qzqt
þ
q2w

qt2

� �

�
q
qz
ðAepeðzÞ � AipiðzÞÞ

qw

qz

� �
þ rrAr

q2w

qt2
¼ f ðz; tÞ, ð2Þ

with w(z,t) the horizontal pipe displacement, z the coordinate along the pipe (directed downward), t the time, EI the

bending stiffness of the pipe, Ae the external cross-sectional area of the pipe, pi(z) and pe(z) the water pressures inside

and outside the pipe, respectively, f(z,t) the normal dynamic reaction of the surrounding water on the pipe element. The

external pressure is considered hydrostatic, while for the internal pressure the following expression is assumed:

piðzÞ ¼ rf gz� rf

u2f

2
� aerf

u2f

2
� rf

f

Di

u2f

2
ðL� zÞ, (3)
u
f

w(z,t)
z 

L 

Fig. 1. Sketch of a submerged riser conveying fluid.
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where ae is the energy loss coefficient at the inlet. The four terms at the right-hand side represent, respectively, the

hydrostatic pressure, the pressure drop due to the fluid speed, the pressure loss at the inlet and the pressure loss due to

wall friction. Kuiper and Metrikine (2005) showed that the second and third terms have only a minor influence on the

stability of the pipe, and hence, these terms are hereinafter disregarded.

The dynamic reaction of the surrounding water on the pipe, f(z,t), is assumed to be a superposition of an inertia force

fin(z,t) and a drag fd(z,t). The inertia force depends only on the acceleration of the pipe, since the surrounding fluid is

considered here as still water. In this section, the description of the drag force is highly simplified assuming it in the form

of a viscous damping (Paı̈doussis, 1998). In Section 4, a more realistic description of the drag is incorporated. The

expression for the total force f(z,t), used in this section, reads

f ðz; tÞ ¼ f inðz; tÞ þ f d ðz; tÞ ¼ �rf AeCa
q2w

qt2
�

1

2
rf DoC�d

qw

qt
, (4)

where Do is the outer diameter of the pipe, Ca the added mass coefficient and C�d the adapted drag coefficient, with the

dimension of velocity. Combining Eqs. (2)–(4), the resulting equation of motion for a pipe conveying fluid can be

written as

EI
q4w

qz4
�

q
qz

TeðzÞ
qw

qz

� �
� 2mf uf

q2w

qzqt
þmf u2f

q2w

qz2
þM

q2w

qt2
þ
1

2
rf DoC�d

qw

qt
¼ 0, (5)

in which

M ¼ mr þmf þ rf AeCa; TeðzÞ ¼ Argðrr � rf ÞðL� zÞ.

The conventional boundary conditions at the ends of the submerged, suspended pipe are given as (Paı̈doussis, 1998,

1999; Kuiper and Metrikine, 2005)

wðz; tÞ ¼ 0 and
qwðz; tÞ

qt
¼ 0 at z ¼ 0;

q2wðz; tÞ

qz2
¼ 0 and

q3wðz; tÞ

qz3
¼ 0 at z ¼ L. (6)

The boundary conditions at the lower end assume a zero bending moment and a zero shear force. In a recent paper,

Paı̈doussis et al. (2005) argued that the force balance at the free end should be described not by the last equation of Eq.

(6) but by the following relationship:

EI
q3wðz; tÞ

qz3
�mf uf

qwðz; tÞ

qt
� uf

qwðz; tÞ

qz

� �
¼ 0 at z ¼ L. (7)

Further to this description of the balance of shear forces, they discussed several other variants accounting for various

depressurization, tensioning effects and direction of inflow. However, all their variants contain the term mf uf ðqw=qtÞ,

which is absent in the conventional boundary condition. This term cancels the effect of the Coriolis force in the

equation of motion, insofar as the calculation of the energy gain at the boundaries is concerned. The new boundary

condition (7) is based on the assumption that the momentum of the fluid changes as the fluid enters the pipe, i.e. the

averaged fluid velocity changes direction, whereas the conventional boundary condition (6) presumes that the

momentum remains unchanged. Using the new boundary condition, Paı̈doussis et al. (2005) explain that the pipe

cannot become unstable at small fluid velocities since the total (over a period of vibrations) averaged amount of energy

of the system remains constant. In this paper, the two extreme boundary conditions for the balance of the shear forces,

(6) and (7), will be addressed.

Introducing the following dimensionless variables and parameters:

Z ¼ w=L; x ¼ z=L; t ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=M

p �
L2; a ¼ Argðrr � rf ÞL

3=EI ;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf =M

p
; U ¼ uf L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf =EI

p
; g� ¼ rf DoC�dL2

.
2
ffiffiffiffiffiffiffiffiffiffiffi
MEI
p� �

;

the equation of pipe motion, Eq. (5), is rewritten as

q4Z

qx4
� a

q
qx
ð1� xÞ

qZ
qx

� �
� 2bU

q2Z
qxqt
þU2 q2Z

qx2
þ

q2Z
qt2
þ g�

qZ
qt
¼ 0. (8)
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The four conventional boundary conditions (6) and the proposed balance of forces at the free end (7) (Paı̈doussis

et al., 2005) are written in dimensionless form as, respectively:

Zðx; tÞ ¼ 0 and
qZðx; tÞ

qx
¼ 0 at x ¼ 0;

q2Zðx; tÞ

qx2
¼ 0 and

q3Zðx; tÞ

qx3
¼ 0 at x ¼ 1, (9)

q3Zðx; tÞ

qx3
�U b

qZðx; tÞ
qt
�U

qZðx; tÞ
qx

� �
¼ 0 at x ¼ 1. (10)
3. Stability of a pipe conveying fluid in the linear approximation

The dynamic stability of a linear system is determined by its eigenfrequencies. To find these, the displacement of the

pipe can be sought for in the following form:

Zðx; tÞ ¼W ðxÞeiot,

where o is the dimensionless, generally complex frequency. Hence, the system is stable if the imaginary part of all

eigenfrequencies is positive, and unstable if at least one eigenfrequency has a negative imaginary part. The most

common way to analyse the eigenfrequencies is to make use of an Argand diagram. In this diagram, the real and

imaginary parts of the natural frequency o are plotted parametrically, as they depend on one of the system parameters.

Normally, the flow velocity uf is used as such a parameter. In this section, along with uf, the hydrodynamic drag is

employed as the parameter to plot a part of the Argand diagram.

For the equation of motion of the free-hanging pipe, Eq. (8), with the conventional boundary conditions (9), the

analysis and the results have been thoroughly discussed by Kuiper and Metrikine (2005). It was found that the stability

of the pipe in this case depends strongly on the hydrodynamic drag. In the absence of the linearized drag the system
U = 0.0, γ *= 0.0 U = 0.0, γ*= 0.0

U = 0.0, γ*= 12.0

U = 2.5, γ *= 12.0

U = 1.59, γ 

ω

*= 12.0

U = 0.0, γ *= 12.0

Re ( )

Im
(ω

)

0

0

Fig. 2. Argand diagram with the first two loci. The pipe becomes unstable by divergence at U ¼ 1:59 using the parameters of Table 1

and the new proposed boundary condition, Eq. (10).
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Table 1

Parameters used as base case

E 1.00� 109N/m2 rf 1.00� 103 kg/m3

L 2.00m rr 1.20 103 kg/m3

Do 3.00� 10�2m Ca 1.00

Di 2.60� 10�2m n 1.00� 10�6m2/s

G.L. Kuiper et al. / Journal of Fluids and Structures 23 (2007) 429–445434
becomes unstable at infinitesimal fluid velocity. By increasing the adapted drag coefficient, the fluid velocity for which

the transition occurs from stable to unstable behaviour is increased significantly. The pipe becomes unstable by flutter

(stable focus to unstable focus bifurcation).

A completely different picture appears for the equation of motion of the free-hanging pipe, Eq. (8), in combination

with the new boundary condition (10) of Paı̈doussis et al. (2005). As can be seen in the Argand diagram in Fig. 2 the

pipe becomes unstable by divergence (stable node to saddle bifurcation). Only the first two eigenfrequencies are plotted

for an adapted drag coefficient C�d of 1.0m/s and using the parameters given in Table 1. These parameters simulate a

flexible, plastic pipe of 2.0m length fully submerged in water. Fig. 2 shows that the path of the first natural frequency

intersects the real o-axis first for increasing flow velocity uf. As expected, the amount of hydrodynamic drag has no

influence on the fluid velocity for a system which becomes unstable by divergence. This means that, even in the absence

of the drag, a relatively high fluid velocity should be achieved to render the pipe unstable. For the parameters in

Table 1, the dimensionless critical velocity is equal to U crit ¼ 1:59, corresponding to uf ;crit ¼ 4:53m=s.
As noted in Section 1, the spatially averaged fluid inflow at the free end is probably tangential neither to the deflected

nor to the undeflected pipe. For a cantilever pipe model with average inlet flow between these two bounds, the stability

will strongly depend on the amount of hydrodynamic drag. To assess the onset of instability and the amplitude of the

pipe motion after the onset, more realistic drag description based on experiments should be incorporated into the

model.
4. Hydrodynamic drag on flexible cylinders

4.1. Existing experiments

In order to obtain reliable predictions of the dynamic behaviour of submerged pipes, a drag description based on

previous experiments is used. For measuring hydrodynamic drag acting on a pipe section in still water, a straight rigid

cylinder is used conventionally. In literature, three test set-ups have been described:
(i)
 a water tank where the cylinder is subjected to forced oscillations at a constant frequency [e.g. Chaplin and Subbiah

(1998)],
(ii)
 a water tank where a cylinder undergoes decaying oscillations following an initial displacement [e.g. Bearman and

Russell (1996)],
(iii)
 a U-shaped water tunnel where the flow oscillates about a cylinder at a constant frequency [e.g. Sarpkaya (1986)].
The drag on a rigid cylinder oscillating in still water is characterized by the Stokes parameter b and the

Keulegan–Carpenter number KC defined as, respectively:

b ¼
D2

o

nT
and KC ¼

2px̂

Do

, (11)

where x̂ is the amplitude of the cylinder displacement, T the period of oscillation and t the kinematic viscosity of the

water.

At low values of KC ðKCo0:1Þ, i.e. small displacement-to-diameter ratios, the flow remains predominantly attached

to the cylinder, and the drag is due to viscous forces in a thin boundary layer attached to the body. For a circular

cylinder oscillating harmonically at small amplitudes in water otherwise at rest, the damping is conveniently expressed

as proposed by Stokes (1851) and later extended by Wang (1968). For large values of b ðb4105Þ, this damping is
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approximately proportional to the velocity of the cylinder, dx/dt. Its value per unit length is given as

FStokes ¼ 2p3=2 rf t
ffiffiffi
b

p dx

dt
¼ 2p3=2

rf Do

ffiffiffi
t
pffiffiffiffi

T
p

dx

dt
, (12)

At larger values of KC ðKC40:1Þ, the flow separates from the pipe, forming a turbulent wake behind the body. In

this turbulent regime, the drag has a quadratic dependence on the transverse velocity of the pipe. In this case, the

instantaneous force acting on the cylinder per unit length is normally expressed as the often-used Morison damping:

FMorison ¼
1

2
rf DoCd

dx

dt

dx

dt

����
����. (13)

Conventionally, even the linear Stokes damping is expressed in terms of a quadratic dependence on velocity, although

the instantaneous force is not proportional to the square of the instantaneous velocity, as the use of the Morison

expression normally suggests. In order to do this, the nonlinear drag force is rewritten as a Fourier series, under the

assumption that the velocity has a sinusoidal character

1

2
rf DoCd ðx̂oÞ2 cosðotÞj cosðotÞj �

1

2
rf DoCd ðx̂oÞ2

8

3p
cosðotÞ þ

1

2
cosð2otÞ þ . . .

� �
,

where o ¼ 2p=T . Taking only the first Fourier term into account, i.e. neglecting the higher harmonics, the

hydrodynamic drag coefficient Cd of the Morison damping at low KC is then given by

Cd ¼
3p3

2
ffiffiffi
p
p

1

KC
ffiffiffi
b

p . (14)

The inverse dependence of Cd on KC compensates for expressing a linear drag through a quadratic dependence of

velocity.

Experimental studies of hydrodynamic drag on a cylinder oscillating in still water at small amplitudes and large

Stokes parameters ðb46� 104Þ have been carried out by, among others, Bearman and Russell (1996), Chaplin and

Subbiah (1998) and Chaplin (2000). These experiments for low Keulegan–Carpenter numbers show a near doubling of

the Cd value in comparison with the value predicted by the Stokes–Wang theoretical analysis, Eq. (14). Sarpkaya (2001)

attempted to find a reason for the deviation of the measured values from the Stokes–Wang laminar flow theory,

however he found good explanation for the doubling of the drag.

In the turbulent regime, in which the displacement amplitudes are relatively large ðKC40:1Þ, Bearman and Russell

(1996) argue that a contribution to Cd of 0.08KC can be expected. They proposed a semi-empirical formula for the total

drag coefficient of the form

Cd ¼
z1

KC
ffiffiffi
b

p þ z2 KC ¼
z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ReKC
p þ z2 KC (15)

with z1 ¼ 55 and z2 ¼ 0:08. Especially for very small KC numbers this formula predicts the drag coefficient in good

agreement with the experiments. Expression (15) is only valid for smooth cylinders and is measured in the

abovementioned experiments for a KC number of 0.3. For smaller values of the Stokes parameter ðbo3� 104Þ

experiments have been conducted for higher Keulegan–Carpenter numbers up to 12 (Justesen, 1988; Rodenbusch and

Kallstrom, 1986). Although the same trend for Cd is observed in all the results, there is an appreciable scatter in the data

for the higher Keulegan–Carpenter numbers. Sarpkaya (2001) observed that, with increasing Keulegan–Carpenter

number, regular (Honji-instabilities) and irregular mushroom-shaped vortices, arise first, followed by turbulence,

separation and vortex shedding. Due to the stochastic behaviour of vortices, a large scatter was observed in the

experimental results for larger KC-values. Nevertheless, we assume that formula (15) is valid for Keulegan–Carpenter

numbers up to 8. The semi-empirical formula, Eq. (15), has been plotted in Fig. 3 for two values of the Stokes

parameter. For rough cylinders the drag coefficient should be increased, depending on the roughness [see e.g., Bearman

and Mackwood (1992), Chaplin and Subbiah (1998)].

4.2. Experimental drag force applicable to flexible pipes

In order to use Eq. (15) for prediction of the dynamic behaviour of a flexible pipe in the time domain, an iterative

procedure is required, because through KC the drag depends on the unknown displacement amplitude and period. Such

procedure is straightforward if the pipe vibrates in a single-mode regime. However, flexible pipes often exhibit multi-

mode vibrations. In this case, the motion of each section of the pipe is approximately decomposable into a number of
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Fig. 3. Drag coefficient according to Eq. (15) versus Keulegan–Carpenter number for b ¼ 670:000 (regular line) and b ¼ 1:277:000
(bold line).
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harmonic vibrations that have different amplitudes. This makes the iterative procedure cumbersome and not necessarily

convergent. Therefore, in this paper, an alternative approach is proposed for description of the drag coefficient. Instead

of using the frequency domain representation of the drag coefficient, Eq. (15), a time-domain expression for the drag is

proposed. Using the time domain expression, vibrations of a flexible pipe can be studied by any conventional time-

domain method (FEM, finite difference, Galerkin method, etc.) without employing an iterative procedure.

The idea is to reconstruct a time domain drag coefficient on the basis of Eq. (15), which should result in a similar

dynamic pipe response. A rigid, elastically mounted cylinder is externally excited at the resonance frequency oe. The

resonance excitation is assumed because it is most sensitive to damping. The predictions obtained using the frequency

and time-domain descriptions are compared to each other requiring that the displacement amplitudes are the same for

the same external force. The following equation of motion describes oscillations of this cylinder in water, provided that

the Morison’s formula is applicable:

d2x

dt2
þ

rf DlCd

2m

dx

dt

dx

dt

����
����þ o2

ex ¼
F

m
sinðoetÞ, (16)

where x is the displacement of the cylinder, l the length of the rigid cylinder, m the mass of the cylinder plus the added

mass and F the amplitude of the external force. The Stokes parameter b and the resonance frequency oe are related to

each other, as indicated by Eq. (11):

b ¼
D2

ooe

2pn
. (17)

Owing to the oscillatory force, the cylinder reaches a periodic motion, and its amplitude can be characterized by the

Keulegan–Carpenter number. Starting with the frequency domain description of the drag coefficient, Eq. (15), the drag

force reads

Fdrag ¼
rf Dol

2

z1
ffiffiffiffiffiffi
nT
p

2px̂
þ z2

2p
Do

x̂

� �
dx

dt

dx

dt

����
����. (18)
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Using this drag force, the steady-state solution can be computed (using an iterative procedure) for a given external

oscillatory force. This computation has been repeated for 20 amplitudes of the external force, so that the range of

Keulegan–Carpenter numbers of our interest is covered ð0:01oKCo8Þ. Besides, systems with three natural frequencies

are considered, by using different values for the Stokes parameter ðb1 ¼ 6:700� 105; b2 ¼ 1:025� 106; b3 ¼
1:277� 106Þ according to Chaplin’s experiments (2000).

The time-domain description of the drag coefficient should result in the same dynamic response of the rigid cylinder

as it is loaded by the same force. As explained before, the hydrodynamic damping for small displacements ðKCo0:1Þ is
caused by viscous effects apparent in a thin boundary layer attached to the pipe. This force is proportional to the

velocity of the pipe. For larger displacements and velocities, the flow separates from the pipe, forming a turbulent wake

behind the body, and the drag is proportional to the square of the pipe velocity. A superposition of these two

contributions is proposed for the description of the drag force in the time domain:

Fdrag;new ¼ Dol
m

Do

A1
dx

dt
þ

1

2
rf A2

dx

dt

����
����dx

dt

� �
, (19)

where A1 and A2 are two unknown dimensionless constants and m is the dynamic viscosity of the fluid ðn ¼ m=rf Þ.

According to Eq. (15), the drag coefficient increases with amplitude (for KCo8), while Eq. (19) has a constant

coefficient in front of the velocity-squared term. This suggests a cubic velocity dependence to capture this difference.

However, it is not easy to get the dimensions of an additional cubic term correctly. Nor is it straightforward to link this

term to the underlying physics. Speculating about this, we think that the cubic term should depend on the vortex

shedding frequency. Unfortunately, the current available experiments do not give information about this. Therefore, we

do not pursue this cubic velocity dependence of the drag. Note that this cubic term does not have an effect on the onset

of instability, but only on the steady-state amplitude.

To find the unknown constants A1 and A2, Eq. (16) is rewritten using Fdrag,new:

d2x

dt2
þDol

m
Do

A1
dx

dt
þ

1

2
rf A2

dx

dt

����
����dx

dt

� �
þ o2

ex ¼
F

m
sinðoetÞ. (20)

The steady-state solution of this equation is computed for the same 20 amplitudes and three frequencies of the

external force as in the previous case. The two unknowns in Eq. (19), A1 and A2, should be chosen such that the

differences between the results for the dynamic response of the cylinder corresponding to the descriptions of the drag
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Fig. 4. Keulegan–Carpenter number versus external force for different Stokes parameters. Bold line: Eq. (18); regular line Eq. (19).
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coefficient in the frequency domain and in the time domain are minimal in some sense. To achieve this, a procedure was

applied to minimize the difference in KC-value (for each given F and b) in the steady-state motion for both drag

descriptions by varying the unknowns A1 and A2. It was found that the smallest error in KC is obtained by choosing

A1 ¼ 27� 103 and A2 ¼ 0:24. The KC-F dependence obtained with these values of A1 and A2 is shown in Fig. 4. The

same parameters as in the experiments performed by Chaplin (2000) were used: m ¼ 4:08� 103 kg, Do ¼ 0:75m,

l ¼ 4:29m, rf ¼ 1:00� 103 kgm�3, n ¼ 1:14� 10�6 m2 s�1.

The Keulegan–Carpenter number in the steady-state regime is plotted as a function of the amplitude of the external

oscillatory force. The bold lines correspond to the drag according to Eq. (18), while the regular lines correspond to the

new description of the drag, Eq. (19). As an example, the displacement in the time domain of a cylinder subject to the

external oscillatory force with F ¼ 1:00� 105 N and b ¼ 1:277� 106 is given in Fig. 5. In this figure, the two lines are

plotted using the two different descriptions of the hydrodynamic drag.

As can be concluded from Figs. 4 and 5, the time-domain description can be considered to reproduce the

hydrodynamic drag in reasonable accordance with the experiments in the range of KC up to 8. In Fig. 4, a difference in

slope is observed for values of KC above 0.2. The reason for this deviation is that in expression (18) Cd has a cubic

dependence on KC, while in expression (19) this dependence is quadratic. As noted, this difference does not affect the

calculated onset of instability.
5. Stability of a pipe conveying fluid with nonlinear drag

In this section, the influence of the hydrodynamic drag on stability of a free-hanging pipe conveying fluid is

investigated by using a nonlinear, time-domain description of the hydrodynamic drag, as derived in the previous

section. At the free end, the conventional boundary conditions are used, Eq. (9). Only for these boundary conditions

does the hydrodynamic drag have a significant effect on the onset of instability of the pipe. For the boundary conditions

proposed by Paı̈doussis et al. (2005), Eq. (10), the results of Section 3 are applicable for prediction of the onset, as this is

not affected by the hydrodynamic drag.
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The equation of motion of the submerged pipe subjected to the nonlinear hydrodynamic drag reads

EI
q4w

qz4
�

q
qz

TeðzÞ
qw

qz

� �
� 2mf uf

q2w

qzqt
þmf u2f

q2w

qz2
þM

q2w

qt2
þDo

m
Do

A1
qw

qt
þ
1

2
rf A2

qw

qt

����
���� qw

qt

� �
¼ 0 (21)

Using the dimensionless variables and parameters

Z ¼ w=L; x ¼ z=L; t ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=M

p .
L2; a ¼ Argðrr � rf ÞL

3=EI ,

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf =M

q
; U ¼ uf L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf =EI

q
; B ¼ mL2

. ffiffiffiffiffiffiffiffiffiffiffi
MEI
p

; g ¼ rf DoL=ð2MÞ,

the equation of motion, Eq. (21) is rewritten as

q4Z

qx4
� a

q
qx

1� xð Þ
qZ
qx

� �
� 2bU

q2Z
qxqt
þU2 q2Z

qx2
þ
q2Z
qt2
þ BA1

qZ
qt
þ gA2

qZ
qt

����
���� qZqt ¼ 0. (22)

Note that the critical fluid velocity does not depend on the nonlinear term in Eq. (22). Therefore, the critical velocities

predicted by Eq. (8) and Eq. (22) may differ due to a difference between g* and zA1. The advantage of using zA1 is that

the numerical value of this coefficient is based on experimental data.

5.1. Galerkin method

Different methods (FEM, finite difference, etc.) are applicable for solving nonlinear partial differential Eq. (22). In

this paper, we have chosen the Galerkin method, since it provides better insight in the physics of the dynamic stability of

the pipe than the other time domain numerical methods. The Galerkin procedure is used to approximate the nonlinear

partial differential equation by a finite set of coupled ordinary differential equations, with the solution expressed as

Zðx; tÞ ¼
X1
m¼1

fmðxÞqmðtÞ, (23)
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Fig. 6. Argand diagram of the complex eigenvalues for a one-mode Galerkin decomposition. The numerical value of Ucrit is based on

the parameters of Table 1.
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where qmðtÞ are unknown time-dependent functions and fmðxÞ are space-dependent shape functions forming a complete

set. The fmðxÞ are chosen as the eigenfunctions of the following operator:

d4

dx4
� a

d

dx
ð1� xÞ

d

dx

� �
� O2

m ¼ 0 (24)

satisfying the conventional boundary conditions, Eq. (9), where Om are the corresponding eigenfrequencies.

The functions fmðxÞ form a complete orthogonal set. The orthogonality condition is used to obtain the

functions qnðtÞ. Substituting Eq. (23) into Eq. (22), multiplying through by fn, and integrating over x 2 ð0; 1Þ, it is
found that

d2qn

dt2
� 2bU

X1
m¼1

Bmn
dqm

dt
þ O2

nqn þU2
X1
m¼1

Cmnqm þ BA1
dqn

dt
þ gA2

X1
m¼1

X1
l¼1

Dlmn
dql

dt

����
���� dqm

dt
¼ 0, (25)

where

Bmn ¼

Z 1

0

dfm

dx
fn dx

	Z 1

0

f2
n dx; Cmn ¼

Z 1

0

d2fm

dx2
fn dx

	Z 1

0

f2
n dx,

Dlmn ¼

Z 1

0

jfl jfmfn dx
	Z 1

0

f2
n dx.

5.2. One-mode approximation

First, the results of the one-mode Galerkin approximation are shown (only the first mode is accounted for). This

approximation is presented to explain the basic instability mechanisms of a cantilever pipe conveying fluid. In the next

two sections, higher modes are taken into account to achieve higher accuracy. For the one-mode Galerkin
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Fig. 7. Phase-plane for a fluid velocity exceeding the critical fluid velocity, showing a stable limit cycle.
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approximation (n ¼ 1), Eq. (25) can be written as two coupled first-order differential equations:

_q1
_p1

( )
¼

0 1

�O2
1 �U2C11 2bUB11 � A1B

" #
q1

p1

( )
þ f ðp1Þ, (26)

where f ðp1Þ is a vector containing the nonlinear terms. This system has only one equilibrium point given by q1 ¼ p1 ¼ 0.

The type of this equilibrium is found by linearizing Eq. (26) in the vicinity of this point. The complex eigenvalues l are

shown in the Argand diagram in Fig. 6 for varying flow velocity U. Note that the axes of this diagram represent the real

and imaginary values of the eigenvalues l instead of the eigenfrequencies o, which was the case in Section 3 (l ¼ io).
This change is made since it is more common in the field of nonlinear dynamics to work with eigenvalues.

The criterion for the instability to occur is that at least one of the eigenvalues has a positive real part. The one-mode

system loses stability through the Hopf bifurcation, i.e. stable focus to unstable focus bifurcation, at a critical fluid

velocity of

Ucrit ¼
A1B
2bB11

. (27)

Using the base case parameters as shown in Table 1, the dimensionless critical velocity of the simulated pipe is found as

U crit ¼ 8:74.
It is interesting to investigate which terms in the equation of motion (22) are responsible for the energy input. At the

critical velocity, the energy of the system considered over one period remains constant since both eigenvalues l are

imaginary. For the energy analysis the equation of motion in this case can be written as

Zðx; tÞ ¼ f1ðxÞq1ðtÞ ¼ f1ðxÞq̂1 cosðo1tÞ, (28)

where q̂1 is the amplitude of the harmonic motion and o1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

1 þU2
critC11

q
. The energy variation over one period of

the motion is caused by the centrifugal force, the Coriolis force and the linear part of the hydrodynamic drag. The
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Fig. 8. Argand diagram of the complex eigenvalues for a two-mode Galerkin decomposition.
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contributions of these forces to the energy loss read

DECent: ¼

Z T

0

Z 1

0

FCent:
qZ
qt

dxdt ¼ U2
crit

Z T

0

Z 1

0

d2f1

dx2
f1q1

dq1
dt

dxdt ¼ 0, (29)

DECor: ¼

Z T

0

Z 1

0

FCor:
qZ
qt

dxdt ¼ �2bU crit

Z T

0

Z 1

0

df1

dx
f1

dq1
dt

� �2

dxdt ¼ �2bU critq
2
1po

Z 1

0

df1

dx
f1 dx, (30)

DEDragL: ¼

Z T

0

Z 1

0

FDragL:
qZ
qt

dxdt ¼ BA1

Z T

0

Z 1

0

f2
1

dq1
dt

� �2

dxdt ¼ BA1q21po
Z 1

0

f2
1 dx. (31)

The remaining terms in the equation of motion, Eq. (22), do not contribute to the energy variation over one period.

As can be seen from Eq. (29) the centrifugal force does not contribute to the energy variation in the first mode

approximation. From Eqs. (27), (30) and (31), it can be seen that the energy loss due to the linearized hydrodynamic

drag is exactly equal to the energy gain due to the Coriolis force at the critical velocity.

In order to investigate the behaviour of the cantilever pipe conveying fluid after the onset of flutter, the nonlinear

terms, as indicated in Eq. (26), have to be taken into account. The phase-plane for this system is shown in Fig. 7 for a

fluid velocity exceeding the critical one, Eq. (27). One can see that the motion grows from sensibly zero to a steady

oscillation of finite amplitude, i.e. to a stable limit cycle.
5.3. Two-mode approximation

A key difference between a one-mode and a two-mode Galerkin approximation is that in the latter case the possibility

of mode interaction is accounted for. For the two-mode Galerkin approximation (n ¼ 2), Eq. (25) can be rewritten in a

system of four coupled first-order differential equations:

_q1
_p1
_q2
_p2

8>>>><
>>>>:

9>>>>=
>>>>;
¼

0 1 0 0

�O2
1 �U2C11 2bUB11 � A1B �U2C21 2bUB21

0 0 0 1

�U2C12 2bUB12 �O2
2 �U2C22 2bUB22 � A1B

2
66664

3
77775

q1

p1

q2

p2

8>>>><
>>>>:

9>>>>=
>>>>;
þ f ðp1; p2Þ, (32)

where f(p1,p2) is a vector containing the nonlinear terms. The complex eigenvalues of the system linearized about the

equilibrium (there is only one, at the origin of the phase space) are plotted in Fig. 8 for increasing values of U. Similarly

to the one-mode approximation, the instability occurs through the Hopf bifurcation, leading to flutter. Using again the

base case parameters (Table 1), the critical velocity for the two-mode approximation is equal to U crit ¼ 4:45, which is

approximately half of the value for the one-mode approximation. To understand this significant reduction in critical

flow velocity, an energy analysis is performed for the two-mode approximation. At the critical velocity the solution of

the equation of motion, using the two-mode approximation, can be written as

Zðx; tÞ ¼
X2
m¼1

fmðxÞqmðtÞ ¼ f1ðxÞq̂1 cosðo2tÞ þ f2ðxÞq̂2 cosðo2t� aÞ, (33)

where o2 is the dimensionless frequency with which modes 1 and 2 vibrate (it is the only real frequency) and a is the

phase lag between modes 1 and 2. In this analysis, only the pair of pure imaginary eigenvalues is taken into account,

since the contribution of the other two complex eigenvalues vanishes quickly with time. Using the two-mode solution,

Eq. (33), the contributions to the energy loss over one period given by the centrifugal force, the Coriolis force and the

linear part of the hydrodynamic drag are now equal to, respectively:

DECent: ¼

Z T

0

Z 1

0

FCent:
qZ
qt

dxdt ¼ U2
crit

Z T

0

Z 1

0

d2f1

dx2
q1 þ

d2f2

dx2
q2

� �
f1

dq1
dt
þ f2

dq2
dt

� �
dxdt

¼ U2
critpq̂1q̂2 sinðaÞ

Z 1

0

d2f1

dx2
f2 �

d2f2

dx2
f1

� �
dx, ð34Þ
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0
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0
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0
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dq2
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f1

dq1
dt
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df1
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f2q̂22
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DEDragL: ¼

Z T

0

Z 1

0

FDragL:
qZ
qt

dxdt ¼ A1B
Z T

0

Z 1

0

f1

dq1
dt
þ f2

dq2
dt

� �2

dxdt

¼ A1Bpo
Z 1

0

ðf2
1q21 þ f2

2q22Þdx. ð36Þ

Using Eq. (24), it can be shown that the remaining terms in the equation of motion, Eq. (22), do not contribute to the

energy variation over one period. In contrast to the one-mode approximation, the centrifugal force contributes to the

energy variation in the two-mode approximation. Whether this force leads to energy loss or energy gain depends on

the value of the phase shift a between the two modes. Using the parameters in Table 1, the energy expression for the

centrifugal force, Eq. (34), is negative, implying an energy gain. The energy gain caused by the centrifugal force is of the

same order as caused by the Coriolis force. The additional contribution of the centrifugal force results in a reduction of

the critical velocity with almost a factor of 2 with respect to the one-mode approximation.

Using the two-mode approximation, the behaviour of the cantilever pipe after the onset of flutter has been analysed

by incorporating the full nonlinear equation, Eq. (32). As expected, for a fluid velocity exceeding the critical one, a

stable limit cycle arises in the four-dimensional phase space (not shown).

5.4. Multi-mode approximation

In order to achieve a sufficient accuracy with the Galerkin method, more than two modes should be taken into

account. It appears that for this system twelve modes are sufficient, since by incorporating more modes the response of

the pipe hardly changes. For the pipe of 2m length and the parameters given in Table 1, the dimensionless critical

velocity is 4.40, which is only slightly less than computed with the two-mode approximation. The 12-mode
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approximation is compared with a numerical method employing a central, explicit finite difference scheme. This

comparison is shown in Fig. 9. The displacement of the tip of the pipe is plotted in the time domain after the system is

released from an initial deflection for an internal fluid velocity just exceeding the critical one. Fig. 9 shows good

correspondence between predictions of the two methods. The difference in the transient regime is caused by slightly

different initial conditions used in the computations.

After analysing the one-, two- and twelve-mode approximations the following can be concluded:
(i)
 A one-mode approximation describes the physical behaviour of the system incorrectly since in this approximation

the centrifugal force does not contribute to the energy variation in the system.
(ii)
 A two-mode approximation describes the dynamic behaviour of the system qualitatively correctly. Even in a

quantitative sense this is a reasonable approximation.
(iii)
 Both the centrifugal and Coriolis forces contribute to the energy gain of the free-hanging pipe conveying fluid.
6. Conclusion

Experiments with cantilever pipes aspirating water up to now never showed any instability. Using the new tip

boundary conditions proposed by Paı̈doussis et al. (2005), Eq. (10), the simulated pipe of 2m length is predicted to

become unstable by divergence at a dimensionless flow velocity Ucrit ¼ 1:59. This corresponds to a fluid velocity of

uf ;crit ¼ 4:53m=s. It is far from easy to achieve such high internal fluid speeds in a pipe of 0.03m diameter, and hence, it

is not surprising that the experiments did not show any instability.

Using the theory proposed in this paper, which assumes that the momentum of the fluid does not change direction as

the fluid enters the pipe, in combination with a realistic description of the hydrodynamic drag, the cantilever pipe is

predicted to become unstable at U crit ¼ 4:40, corresponding to a fluid speed of uf ;crit ¼ 12:6m=s. It is impossible to

achieve such high internal fluid speeds in a 0.03m diameter pipe. Hence, in our view theory and experiments do not

show any contradiction.

Probably, the truth will not be described by just one of the two discussed theories. We expect that an intermediate

approximation is more likely. Both the correct description of the flow field in the vicinity of the tip and the external

hydrodynamic drag will be of great importance for the prediction of the stability of the pipe conveying fluid. For this

reason we initiated new experiments using longer pipes, so that the critical velocity becomes attainable. The experiments

will hopefully reveal whether and how the pipe becomes unstable, i.e. by divergence or by flutter, and at which internal

fluid velocity.
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